Response of Dense Relativistic Matter to A Magnetic Field

Volodya Miransky

E.V.Gorbar, V.M., and I. Shovkovy, Phys. Rev. C80 (2009), 032801(R) + work in progress

Dense relativistic matter

- Dense relativistic matter is common inside compact stars
 - Electrons in white dwarfs
 T ≪ m ≤ μ (i.e., T≤ 1 keV & μ≃1 MeV)
 - Neutrons of nuclear matter
 T ≪ m ≤ μ (i.e., T≤ 10 MeV & μ≃1 GeV)
 - Electrons inside stellar nuclear matter $m \lesssim T \ll \mu$ (i.e., $T \lesssim 10 \text{ MeV} \& \mu \simeq 100 \text{ MeV}$)
 - Dense quark matter in stellar cores (if formed)
 T≤ m≪ μ (i.e., T≤ 10 MeV & μ≥400 MeV)

Zero Density State

• Magnetic catalysis (dynamical generation of a nonzero Dirac mass even at $g \ll 1$)

[V. Gusynin, V.M., I. Shovkovy, PRL 73, 3499 (1994); PLB 349, 477]

Magnetic catalysis and anisotropic confinement in QCD

V. A. Miransky*

Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

I. A. Shovkovy*

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (Received 5 June 2002; published 15 August 2002)

The expressions for dynamical masses of quarks in the chiral limit in QCD in a strong magnetic field are obtained. A low energy effective action for the corresponding Nambu-Goldstone bosons is derived and the values of their decay constants as well as the velocities are calculated. The existence of a threshold value of the number of colors N_c^{thr} , dividing the theories with essentially different dynamics, is established. For the number of colors $N_c \ll N_c^{thr}$, an anisotropic dynamics of confinement with the confinement scale much less than Λ_{QCD} and a rich spectrum of light glueballs is realized. For N_c of order N_c^{thr} or larger, a conventional confinement dynamics takes place. It is found that the threshold value N_c^{thr} grows rapidly with the magnetic field $[N_c^{thr} \gtrsim 100 \text{ for } |eB| \gtrsim (1 \text{ GeV})^2]$. In contrast with QCD with a nonzero baryon density, there are no principal obstacles for examining these results and predictions in lattice computer simulations.

DOI: 10.1103/PhysRevD.66.045006 PACS number(s): 11.30.Qc, 11.30.Rd, 12.38.Aw, 12.38.Lg

A. J. Mizher, M. N. Chernodub and E. S. Fraga, *Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions,* arXiv:1004.2712 [hep-ph].

General idea

 Topological current in relativistic matter in a magnetic field (3+1 dimensions)

$$\langle \bar{\psi} \gamma^3 \gamma^5 \psi \rangle = \frac{eB}{2\pi^2} \mu$$
 (free theory!)

[Metlitski, Zhitnitsky, PRD 72, 045011 (2005)]

• Should there be a dynamical parameter Δ , associated with an axial-vector condensate $\langle A_5^3 \rangle$?

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_\Delta$$
 where $\left[\mathcal{L}_\Delta \simeq \Delta \bar{\psi} \gamma^3 \gamma^5 \psi\right]$

• Note: Δ =0 is not protected by any symmetry

Lesson from graphene

- Dynamics of Quantum Hall Effect in graphene
 (≈ 2-brane QED)
 - Parity and time-reversal odd
 Dirac (Chern-Simons) mass*

$$\Delta \sim \langle \bar{\Psi} \gamma^3 \gamma^5 \Psi \rangle$$

△ describes the
 0th plateau in
 Quantum Hall
 effect in
 graphene

$$iG^{-1}(u, u') = \left[(i\partial_t + \mu)\gamma^0 - (\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \pi^3 \gamma^3 + i\tilde{\mu}\gamma^1 \gamma^2 + \Delta \gamma^3 \gamma^5 - m \right] \delta^4(u - u')$$

*[Gorbar, Gusynin, V.M., Shovkovy., PRB 78, 085437 (2008)]

Model

Lagrangian density:

$$\mathcal{L} = \bar{\psi} \left(iD_{\nu} + \mu_0 \delta_{\nu}^0 \right) \gamma^{\nu} \psi + \frac{G_{\text{int}}}{2} \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma^5 \psi \right)^2 \right]$$

The dimensionless coupling is

$$g \equiv G_{\rm int} \Lambda^2 / (4\pi^2) \ll 1$$

• Magnetic field is inside $D_{\nu}=\partial_{\nu}-ieA_{\nu}$ where $A_{\nu}=xB\delta_{\nu}^2$ (Landau gauge)

Approximation

 Gap equation in mean-field approximation:

$$G^{-1}(u, u') = S^{-1}(u, u') - iG_{int} \{G(u, u) - \gamma^5 G(u, u)\gamma^5 - tr[G(u, u)] + \gamma^5 tr[\gamma^5 G(u, u)]\} \delta^4(u - u')$$

where

$$iG^{-1}(u,u') = \left[(i\partial_t + \mu)\gamma^0 - (\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \pi^3 \gamma^3 + i\tilde{\mu}\gamma^1 \gamma^2 \left[+ \Delta \gamma^3 \gamma^5 \right] - m \right] \delta^4(u - u')$$

and

$$iS^{-1}(u, u') = \left[(i\partial_t + \mu_0)\gamma^0 - (\boldsymbol{\pi} \cdot \boldsymbol{\gamma}) - \pi^3 \gamma^3 \right] \delta^4(u - u')$$

Vacuum state

• Magnetic catalysis (spontaneous generation of a nonzero Dirac mass even at $g \ll 1$):

$$m_{
m dyn}^2 = rac{1}{\pi l^2} \exp\left(-rac{\Lambda^2 l^2}{g}
ight)$$
 where $l=1/\sqrt{|eB|}$

(along with $\mu = \mu_0$)

[Gusynin, V.M., Shovkovy, PRL 73, 3499 (1994); PLB 349, 477 (1995)]

The solution exists for $\mu_0 < m_{dyn}$, although it will be less stable than the normal state (m=0) already for $\mu_0 \gtrsim m_{\rm dyn}/\sqrt{2}$ [Clogston, PRL 9, 266 (1962)]

"Abnormal" normal ground state

The gap equation allows another solution,

$$\mu \simeq \mu_0 \text{ and } \Delta \simeq g\mu_0 eB/\Lambda^2$$

- This solution is almost independent of temperature when $T \ll \mu$
- This is the normal ground state since its symmetry is same as in the Lagrangian
- \bullet Besides, there is no trivial solution Δ =0

Change of ground state

 The free energy in the state with m≠0 (broken symmetry)

$$\Omega_m \simeq -\frac{m_{\text{dyn}}^2}{2(2\pi l)^2} (1 + (m_{\text{dyn}}l)^2 \ln |\Lambda l|)$$

• The free energy in the normal state, $\Delta \neq 0$

$$\Omega_{\Delta} \simeq -\frac{\mu_0^2}{(2\pi l)^2} \left(1 - g \frac{|eB|}{\Lambda^2} \right)$$

• So, indeed symmetry is restored for $\mu > \mu_{\rm c}$, $\mu_c \simeq m_{\rm dyn}/\sqrt{2}$

Physical meaning of Δ

The dispersion relation of quasiparticles:

$$\omega_{n,\sigma} = -\mu \pm \sqrt{\left[k_3 + \sigma\Delta\right]^2 + 2n|eB|}$$

where $\sigma = \pm 1$ is the chirality

- Longitudinal momenta of opposite chirality fermions are shifted, i.e., $k_3 \rightarrow k_3 \pm \Delta$
- All Landau levels $(n \ge 0)$ are affected by Δ

Magnetic catalysis at μ_0 =0

T=0 results

T≠0 results

- These are smoothed versions of the T=0 results
- The dependence μ - μ_0 versus μ_0 (not shown) at T $\neq 0$ is similar to Δ versus μ_0 (shown)

Induced axial current

The axial current in the ground state is

$$\langle \bar{\psi} \gamma^3 \gamma^5 \psi \rangle = \left[\frac{eB}{2\pi^2} \mu \right] - \frac{|eB|}{2\pi^2} \Delta - \frac{|eB|}{\pi^2} \Delta \sum_{n=1}^{\infty} \kappa(\sqrt{2n|eB|}, \Lambda)$$

- In addition to the topological contribution, $\frac{eB}{2\pi^2}\mu$ there are dynamical ones $\propto \Delta$
- An equivalent result is also obtained in the Pauli-Villars regularization
- Note: on the solution to the gap equation:

$$\langle j_5^3(u)\rangle = \frac{2\Delta}{G_{\rm int}} = \frac{\Delta}{2\pi^2} \frac{\Lambda^2}{g}$$

Potential implications

- Physical properties to be affected
 - transport
 - emission
 (must be sensitive to anisotropy and/or CP violation)
- Specific physical systems
 - Compact stars
 - Quark stars (quarks)
 - Hybrid stars (quarks, electrons)
 - Neutron stars (electrons)
 - White dwarfs (electrons)
 - Heavy ion collisions [Kharzeev & Zhitnitsky, NPA 797, 67(2007), Kharzeev, McLerran & Warringa, NPA 803, 227 (2008), ...]

Pulsar kicks

• The dynamical chiral shift parameter is driven by chemical potential $(T \ll \mu)$

$$\Delta \simeq g\mu_0 eB/\Lambda^2$$

and is almost independent of temperature

- This creates an anisotropy in the distribution of left-handed quarks/electrons
- The anisotropy is transferred to left-handed neutrinos by elastic scattering
- Pulsar gets a kick when neutrinos escape

Supernova explosions

 Because of the robustness of the axial currents at finite temperatures, even supernova explosions may be affected

 A small early-time neutrino asymmetry may facilitate explosions and give a kick at the same time, e.g., see

[Fryer & Kusenko, Astrophys. J. Supp. 163, 335 (2006)]

Recent related works

- A. Rebhan, A. Schmitt and S. A. Stricker, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP 1001, 026 (2010)
- G. Basar, G. V. Dunne and D. E. Kharzeev, Chiral Magnetic Spiral, arXiv:1003.3464 [hep-ph].
- K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, arXiv:1004.2769 [hepph].
 - (Modification of the CME due to "vector-like" Δ)

Summary

- Main message: Order parameters in relativistic systems with a non-Lorentz invariant ground state can be quite different from conventional Lorentz invariant order parameters
- $\mu < \mu_c$: Chiral symmetry is broken in the ground state (magnetic catalysis)
- $\mu > \mu_c$: Normal ground state of dense relativistic matter in a magnetic field is characterized by
 - Chiral shift parameter (may have dramatic implications for stars)
 - Axial current along the field (physical effects are not obvious)
 - No solution with vanishing \(\Delta \) exists

Outlook

- Calculation of neutrino emission/diffusion in the state with a chiral shift parameter (work in progress)
- Transport properties of the normal state with nonzero chiral shift parameter
- The fate of the induced axial current in the renormalized models (work in progress)

